Simple spike responses of gaze velocity Purkinje cells in the floccular lobe of the monkey during the onset and offset of pursuit eye movements.
نویسندگان
چکیده
1. We recorded the simple spike firing rate of gaze velocity Purkinje cells (GVP-cells) in the flocculus/ventral paraflocculus of two monkeys during the smooth pursuit eye movements evoked by a target that was initially at rest, started suddenly, moved at a constant velocity, and then stopped. 2. For target motion in the preferred direction, GVP-cells showed a large transient increase in firing rate at the onset of pursuit, a smaller but sustained increase during the maintenance of pursuit, and a smooth return to baseline firing with little undershoot at the offset of pursuit. For target motion in the nonpreferred direction, GVP-cells showed a small decrease in firing rate at the onset of pursuit, a similar sustained decrease during the maintenance of pursuit, but a large transient increase in firing rate at the offset of pursuit before returning to baseline firing. 3. We pooled the data in our sample of horizontal GVP-cells by subtracting the population average of firing rate recorded during pursuit in the nonpreferred direction from the population average recorded during pursuit in the preferred direction. We transformed this net population average by passing it through a model of the brain stem final common pathway and the oculomotor plant. This yielded a signal that closely matched the observed trajectory of eye velocity during pursuit. We conclude that the transient overshoots exhibited in the firing rate of GVP-cells can provide appropriate compensation for the lagging dynamics of the oculomotor plant.
منابع مشابه
Purkinje cells of the cerebellar dorsal vermis: simple-spike activity during pursuit and passive whole-body rotation.
To track a slowly moving object during whole body rotation, smooth-pursuit and vestibularly induced eye movements must interact to maintain the accuracy of eye movements in space (i.e., gaze), and gaze movement signals must eventually be converted into eye movement signals in the orbit. To understand the role played by the cerebellar vermis in pursuit-vestibular interactions, in particular whet...
متن کاملVertical Purkinje cells of the monkey floccular lobe: simple-spike activity during pursuit and passive whole body rotation.
To understand how the simian floccular lobe is involved in vertical smooth pursuit eye movements and the vertical vestibuloocular reflex (VOR), we examined simple-spike activity of 70 Purkinje (P) cells during pursuit eye movements and passive whole body rotation. Fifty-eight cells responded during vertical and 12 during horizontal pursuit. We classified P cells as vertical gaze velocity (VG) i...
متن کاملEncoding and decoding of learned smooth-pursuit eye movements in the floccular complex of the monkey cerebellum.
We recorded the simple-spike (SS) firing of Purkinje cells (PCs) in the floccular complex both during normal pursuit caused by step-ramp target motions and after learning induced by a consistently timed change in the direction of target motion. The encoding of eye movement by the SS firing rate of individual PCs was described by a linear regression model, in which the firing rate is a sum of we...
متن کاملContribution of the cerebellar flocculus to gaze control during active head movements.
The flocculus and ventral paraflocculus are adjacent regions of the cerebellar cortex that are essential for controlling smooth pursuit eye movements and for altering the performance of the vestibulo-ocular reflex (VOR). The question addressed in this study is whether these regions of the cerebellum are more globally involved in controlling gaze, regardless of whether eye or active head movemen...
متن کاملChanges in the responses of Purkinje cells in the floccular complex of monkeys after motor learning in smooth pursuit eye movements.
We followed simple- and complex-spike firing of Purkinje cells (PCs) in the floccular complex of the cerebellum through learned modifications of the pursuit eye movements of two monkeys. Learning was induced by double steps of target speed in which initially stationary targets move at a "learning" speed for 100 ms and then change to either a higher or lower speed in the same direction. In rando...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 72 4 شماره
صفحات -
تاریخ انتشار 1994